Pneumoperitoneum

Physiological consequences
Anaesthetic implications

Suzy Cook
2 August 2006
Overview

• What is it?
• Physiological consequences
 – CV, resp, other
• Why do we bother? benefits vs risks
• Anaesthetic considerations
Pneumoperitoneum

• The presence of gas or air in the peritoneal cavity
 – Spontaneous
 • eg. ruptured abdominal viscous (eg. peptic ulcer)
 – Iatrogenic
 • Laparoscopic surgery
Laparoscopic Surgery

• History
 – early 70’s - gynae for lx/Dx
 – 83 – appendicectomy
 – late 80’s - cholecystectomy

• Intra-abdominal pressures (IAP)
 – initially higher >20 mmHg
 – since ~1990 <15 mmHg

• Now used for increasingly complex procedures
 – GI colonic, gastric, splenic, hepatic surgery
 – gynae hysterectomy
 – urol nephrectomy, prostatectomy
 – vasc aortic surgery
Laparoscopic Techniques- pneumoperitoneum

choice of gas depends on

- solubility in blood (↑sol → ↓risk gas embolism)
- permeability in the tissues
- combustibility
- expense
- other systemic side effects

- air
 - ↑ risk of gas embolism
 - supports combustion
- N₂O
 - supports combustion
 - associated with sudden cardiac arrest
- O₂
 - supports combustion++
- Helium
 - inert, not absorbed from peritoneum
 - ↑ risk of gas embolism
- CO₂
 - doesn’t support combustion
 - highly soluble in blood/tissues
 - inexpensive
 - seems to stimulate CV system → partial correction of HD Δ due to ↑ IAP
 - causes hypercarbia, resp acidosis, shoulder tip pain
• CO$_2$ insufflated at ~1-2 L/min
• ~25-30L insufflated during average procedure

• eliminated via lungs
 – rapid d2 \uparrow sol/diffusibility in healthy pt’s
 \downarrow if alv vent impaired by mechanics/CV disease
Physiological Consequences
-Factors Involved

- pneumoperitoneum
 - \uparrow PaCO$_2$
 - \uparrow intra-abdominal pressure (IAP)

- patient positioning
 - head down/Trendelenberg
 - eg. for upper abdo surgery
 - head up/reverse Trendelenberg
 - eg. for pelvic/lower abdo surgery
 - lithotomy
 - to facilitate surgical access caudally
Causes of \(\uparrow \text{PaCO}_2 \)

- absorption from peritoneal cavity
 - main factor (partic in young/healthy)
 - minimal \(\Delta \) in \(\text{PaCO}_2 \) when CO\(_2\) not used
 - proportional to CO\(_2\) pressure
 - absorption \(\uparrow \) with extraperitoneal insufflation

- impairment of vent/perfusion by mechanical factors
 - \(\uparrow \) IAP, pt position, IPPV
 - \(\downarrow \) ventilation due to drugs
 - ie. during spontaneous ventilation

- \(\text{PaCO}_2 \) generally returns to normal within 1hr of desufflation
 (may take several hrs following prolonged procedure)
\[\uparrow \text{PaCO}_2 \text{ also depends on anaesthetic technique} \]

- **Regional**
 - \(\text{PaCO}_2 \) unchanged due to \(\uparrow \uparrow \) min vent

- **Mech vent GA**
 - \(\text{PaCO}_2 \) \(\uparrow \) to reach a plateau \(\sim 15-30 \) mins after start of insufflation
 - \(\uparrow \) by \(\sim 15-25\% \)
 - related to \(\uparrow \) IAP
 - Any significant \(\uparrow \) after this requires Ix for another cause

- **Spont vent GA**
 - \(\uparrow \uparrow \text{PaCO}_2 \) due to
 - anaes induced vent depression
 - \(\times \) \(\uparrow \) WOB due to \(\downarrow \) compliance
 - \(\times \) \(\uparrow \) RR not enough to compensate
CV effects of $\uparrow \text{PaCO}_2$

- PaCO_2 45-50mmHg
 - no signif HD effects
- PaCO_2 50-70mmHg
 - indirect effects via sympathetic stimulation
 - $\uparrow \text{HR}$
 - \uparrow risk arrhythmias
 - peripheral vasoconstriction $\rightarrow \uparrow \text{SVR}$
 - counter balanced by direct effects on BV
 - periph vasodilation incl cerebral
 - direct myocardial depressant
CV effects of ↑ IAP
regardless of gas used

↑ IAP

pooling of blood in legs

↑ venous resistance

↑ intraTx press

stimulation peritoneal repts

↑ vasc resist of intra-abd organs

release neurohumoral factors (catecholamines, RAS, ADH)

↓ venous return

↓ inotropism??

↑ SVR

↓ preload

↑ afterload

↓ cardiac output

↑ MAP
CV effects of ↑ IAP

- dependant on vol of gas & pressure
- effects exaggerated in head up position

- ~14 mmHg → CO maintained

- ~20 mmHg → CO maintained
 - small ↑ ICP

- ~30 mmHg → CI falls to ~50% of preop in 5 min
 - ↑ pressure on IVC
 - ↓ CVP (but remains higher than pre insufflation levels)

- ~40 mmHg → CO ↓ by 17% (normovol), 53% (hypovol)
 - ↓↓ VR & R heart filling pressures
• 25% ↑ MAP
• 38% ↑ LV systolic wall stress
• 25% ↓ LV EF
• 18% ↓ LV SV related to ↑ afterload
 – compensated for by ↑ HR
 → CO unchanged (CO = SV x HR)
• impaired LV diastolic function without change in LVEDV
• effect on preload was negligible in adequately volume loaded patients
CV effects due to positioning

- head down/Trendelenberg
 - VR, CVP \uparrow
 - CO \uparrow
 - MAP \uparrow
 - intravasc press in lower torso/pelvis
 - \downarrow blood loss
 - \uparrow risk gas embolism
 - barorepts \rightarrow vasoD/\downarrow HR \rightarrow stabilisation
 - $\uparrow\uparrow$ in cor art disease
 - can \rightarrow detrimental \uparrow myocardial O_2 demand
• head up/reverse Trendelenberg
 - CO ↓ (proport to degree tilt) due to ↓ VR (↓ preload)
 - MAP ↓
 - venous stasis

- barorepts → ↑ SNS
 → ↑ SVR/HR
 → compounds Δ’s due to pneumoperitoneum

• lithotomy
 - elevation legs
 - acute ↑ VR → exacerbating/precipitating cardiac failure
 - lowering legs
 - acute ↓ VR → hypotension
 - magnitude of effects depend on volume status
Arrhythmias

usaha

vagal tone

- eg. peritoneal stretch, diathermy fallopian tubes

if:

- anaesthesia light
- B-blockers
- preexisting CV disease
- gas embolism
Thromboembolism

• venous stasis
 – immobility
 – head up position
 ↑ IAP

• BUT...
 – incidence of TE doesn’t appear to be ↑
Pre-existing CV disease

- HD changes are less well tolerated
 - ↓ SvO₂ in 50% of ASA 3&4 despite preop HD optimisation
- △↑ afterload is the main factor
- more severe with deplete IV volume
 - ↓ CO
 - ↓ CVP
 - ↑ MAP
 - ↑ SVR
- NB. HD changes are well tolerated in morbidly obese
Resp effects of ↑ PaCO₂

- chemoceptor stimulation of resp centres
 - ↑ ventilation
 - each ↑ of 1mmHg of PaCO₂ → ↑ vent by ~2L/min
Resp effects of ↑ IAP

- ↓ compliance by 30-50%
 - not affected by subsequent tilting/↑ min vent
- ↑ airway pressures
 - peak ↑ by 50%, plateau ↑ by 81%
 ↑ intrathoracic pressure
- ↓ FRC
 - due to diaphragm elevation
- Δ distribution vent/perfusion
- ↑ atelectasis

- in pt’s without CV disease
 → no Δ in physiological dead space/shunt
Resp effects due to positioning

- head down/Trendelenberg
 - FRC ↓
 - total lung vol ↓
 - complicance ↓
 - atelectasis ↑
 ↑ VQ mismatching

- head up
 - only minimal Δ in compliance/gas exchange

- lithotomy
 ↓ FRC

↓↓ in steep head down/obese/elderly/debilitated
Renal effects

- due to ↑ IAP
 - ↓ RBF
 - ↓ GFR
 - ↓ urine output

- urine output signif ↑ after desufflation

\[\text{to less than 50\% of baseline} \]
Cerebral effects

• due to $\uparrow \text{PaCO}_2$
 – vasodilation $\rightarrow \uparrow \text{CBF} \rightarrow \uparrow \text{ICP}$
 – ICP also $\uparrow \text{independent of PaCO}_2$ to some degree
 • children with VP shunts, pigs
 – IOP
 • not affected in no pre-existing disease
 • slight \uparrow in animals with glaucoma

• due to positioning
 – head down/Trendelenberg
 • ICP/IOP \uparrow due to venous congestion
 – head up
 • ICP \downarrow
GI effects

• lower oesophageal sphincter
 \uparrow IAP $\rightarrow \Delta$ LOS \rightarrow barrier pressure maintained

• splanchnic/hepatic blood flow
 – due to \uparrow IAP
 $\not\uparrow$ or \downarrow depending on study =controversial
 • effects not likely to be significant
Patient Benefits

‑ ▼ stress response
‑ ▼ metabolic response
 ‑ lessens ▲ WCC, bsl
 ‑ ▲ better preserved immune function
‑ ▼ pain post-op
‑ ▼ pulm dysfunction post-op
 • avoids prolonged exposure & manipulation of intestines
 ‑ ▼ ileus, earlier return GI function
‑ ▼ adhesion formation
Disadvantages

- greater HD instability
- greater impact on intra-op resp function
- duration of procedure
- surgical learning curve
- difficulty in assessing blood loss
- post op pain due to residual pneumoperitoneum
- post op N+V
- complications

- lap append didn’t offer any significant advantages over open append at 2 weeks post-op wrt:
 - pain scores & medications
 - resumption of diet
 - length of stay
 - activity scores
- however, improved QOL scores
- took longer to perform (& more expensive)
- “choice of procedure should be based on surgeon or patient preference”
Complications of Laparoscopy

• complx related to surgical procedure
 – less obvious than with open
 • concealed hemorrhage, retroperitoneal haematoma
 • delayed: subhepatic/phrenic abscess
• gas where it shouldn’t be
• complx related to positioning of patient
• anaesthetic complx

Recently:

↓ death rate but ↑ complx rate due to ↑ complexity of procedures
 current complication rate ~5%
Gas where it shouldn’t be

- intrapleural
- mediastinum
- pericardium
- subcutaneous
- embolus
pneumothorax, -pericardium, -mediastinum

• caused by:
 ↑ IAP → gas tracking through potential channels due to embryonic remnants or defects in the diaphragm
 – pleural tears during surgery
 – rupture of pre-existing pulmonary bullae
 • due to ↑ alv ventilation/pressures during IPPV
Pneumothorax

- Clinically
 - ↓ compliance
 - ↑ airway pressures
 - → ↓ SaO₂
 - ± sub cut emphysema
- Dx = auscultation (↓ bs, ↑ resonance), CXR
- tension pneumothorax can occur

Capnothorax

▷ ↑ PaCO₂ / ETCO₂ due to ↑ absorb area in pleural cavity
- Guidelines intra-op for capnothorax:
 - stop N₂O, ↑ O₂ to correct hypoxia
 - PEEP
 - ↓ IAP as much as possible, close communication with surgeon
 - avoid thoracocentesis unless necessary
- if CO₂/N₂O used → spont resolution 30-60 mins post desufflation

Pneumothorax from bullae rupture

▷ ↓ ETCO₂ due to ↓ CO
- Guidelines for bullae rupture as for capnothorax EXCEPT:
 - no PEEP
 - thoracocentesis mandatory
Subcutaneous emphysema

- due to extraperitoneal insufflation
 - accidental
 - intentional eg IH repair, HH repair
- extent of emphysema is proportional to gas pressure
 ΔPaCO_2, ETCO$_2$, CO$_2$ elimination
- PaCO_2 may not be able to be normalised by \uparrow vent
 \Rightarrow pause insufflation to enable correction of $\uparrow \text{PaCO}_2$
 \Rightarrow then resume at \downarrow insufflation pressures
- doesn’t imply pneumothorax
- resolves after desufflation
- doesn’t CI extubation
 \Rightarrow but mech vent recommended until hypercapnea corrected
Gas embolus

- due to:
 - direct needle/trocar injection into bv
 - gas insufflation into abdo organ
- timing:
 - mostly at induction of pneumoperitoneum
- risk ↑ with:
 - head up position
 - prev abdo surgery
 - less soluble gas (lethal dose \(\text{CO}_2 \) ~5x that of air)
- frequency:
 - gas embolus in 68.75% (16 pts ASA 1-3 TOE during lap chole)
 - 45% during peritoneal insufflation
 - 55% during gallbladder dissection
 - mean duration ~170 secs
 - minimal HD instability (no Δ HR, SpO\(_2\))
 - clinically apparent \(\text{CO}_2 \) embolus
 - 0.013% of gynae laparoscopies
effects with:
- size of bubbles, rate of intravenous entry

- ≤0.5ml/kg
 - ↑ PAP
 - change in Doppler sounds
- ~2ml/kg
 - ↓ ETCO$_2$ due to ↓ CO & ↑ dead space
 - after initial ↑ due to ↑ pulm excretion CO$_2$
 - ↑ HR, arrhythmias
 - ↓ MAP
 - ↑ CVP
 - “millwheel” murmer
 - R heart strain on ECG
 - ↓ SpO$_2$ / cyanosis
 - “foamy” blood or gas aspirated from CVC
• 20-30% of people have patent foramen ovale
 – acute ↑ RV pressure → causes FO to open
 → paradoxical embolism to L heart
 – embolism to cerebral & coronary circulations

• treatment
 – cease insufflation, release pneumoperitoneum
 – position steep head down, L lat
 – 100% O₂
 ↑ ventilation to ↑ CO₂ excretion
 – CVC/PAC to aspirate gas
 – CPR can help fragment gas into smaller bubbles
 – CPB for massive embolus
 – HBO₂, partic for cerebral embolism
Complx due to positioning

• endobronchial intubation
 ↑ risk with head down, lithotomy
 → ↓ SpO₂, ↑ airway pressures

• nerve injury
 – lithotomy
 • common peroneal (lat)
 • saphenous (med)
 • obturator/sciatic (excessive flexion hip)
 – shoulder braces
 • brachial plexus
 – arm over-extension
 • ulnar nerve

• compartment syndrome of lower extremities
 – prolonged lithotomy position
Anaesthetic complex

• ~1/3 of deaths assoc with laparoscopic procedures were related to anaesthetic complex during GA without intubation
Anaesthetic considerations
pre-op

• absolute CI = rare
• relative CI
 ↑ ICP
 – hypovolaemia
 – VP or peritoneojugular shunt
 • safe if shunt clamped prior to insufflation
• H_x/E_x
 – severe CCF/terminal valve insufficiency
 • more likely to develop CV complx than IHD
 – renal failure
 – resp disease
 • reduced post-op pulm dysfunction
• I_x
 – ± echo
Anaesthetic considerations

intra-op 1

• optimisation of HD/volume status
 – partic CV disease, renal failure

• monitoring
 – ETCO$_2$
 • PaCO$_2$:ETCO$_2$ = variable, ↑ more in CV/resp disease
 – SpO$_2$
 – ECG
 – (Pulm art catheter)

• positioning
 – tilting slow & progressive
 – check ETT position after each Δ pt position
intra-op 2

• anaesthetic technique
 – GA
 • ETT & mech ventilation = safest
 • ?LMA → recommendations:
 – short cases, ↓ IAP, ↓ degree of tilt, healthy/thin pts
 • ETCO₂ maintained ~35mmHg
 – (~15-25% ↑ in minute ventilation)
 • ± omission of N₂O
 – no clinical advantage but improves surgical conditions
 – regional
 • need extensive block (T4-L5), doesn’t prevent shoulder tip pain
 • useful for severe resp disease
 – local
 • needs gentle/precise surgical technique, relaxed/cooperative pt, ↓ IAP, minimal port sites
intra-op 3

• induction
 – avoid over inflation of stomach
• drugs
 – vasodilators can improve afterload
 – adequate muscle relaxation to minimise ↑ IAP
• ± NGT to deflate stomach
• ± IDC to deflate bladder (lower abdo surg)
• avoid hypovolaemia
• DVT prophylaxis as usual
Anaesthetic considerations post-op

خفض تدفق الأوكسجين - pulmonary dysfunction
 -
 - but PaO₂ still ↓, O₂ demand ↑
 - O₂ administration recommended

• post-op
 - usual monitoring
 - analgesia
In summary...

• pneumoperitoneum
• physiological consequences
 – CV, resp, other
• benefits vs risks
• anaesthetic considerations